Neural network back propagation
27 Dec 2017
Demonstration of back propagation on neural networks
$x$ input for first hidden layer
$D$ number of features from x
$z$ input for hidden layer
$M$ number of hidden layer of network
$K$ Number of output classification classes
$a$ input of last layer
$y$ output of last layer
$t$ trained classification output [0,1]
$W_{dm}$ Matrix of weights from input to hidden layer $z$
$b$ Bias of input hidden layer $z$
$V_{mk}$ Matrix of weights from hidden layer to output $y$
$c$ Bias of input hidden layer $z$
$f(x)$ is the function of the middle neuron [$sigmoid(x)$, $tanh(x)$, $reLU(x)$]
$g(x)$ is the function of the last neuron [$sigmoid(x)$, $softmax(x)$, $linear(x)$]
From forward propagation formulas:
back propagation gradient searching max of Ln (Likelihood):
From derivative softmax: